35 research outputs found

    An Efficient Approach To Object Recognition For Mobile Robots.

    Get PDF
    In robotics, the object recognition approaches developed so far have proved very valuable, but their high memory and processing requirements make them suitable only for robots with high processing capability or for offline processing. When it comes to small size robots, these approaches are not effective and light- weight vision processing is adopted which causes a big drop in recognition performance. In this research, a computationally expensive, but efficient appearance-based object recognition approach is considered and tested on a small robotic platform which has limited memory and processing resources. Rather than processing the high resolution images, all the times, to perform recognition, a novel idea of switching between high and low resolutions, based on the “distance to object” is adopted. It is also shown that much of the computation time can be saved by identifying the irrelevant information in the images and avoid processing them with computationally expensive approaches. This helps to bridge the gap between the computationally expensive approaches and embedded platform with limited processing resources

    Implementation Of Distributed Mosaic Formation And Object Detection In Modular Robotic Systems.

    Get PDF
    In reconfigurable modular robotics, when robot modules joins to form a robotic organism, they create a dis- tributed processing environment in a unified system. This research builds on the efficient use of these dis- tributed processing resources and presents the manner these resources can be utilised to implement distributed mosaic formation and object detection within the organism. The generation of mosaics provides surrounding awareness to the organism and helps it to localise itself with reference to the objects in the mosaics. Whereas, the detection of objects in the mosaic helps in identifying parts of the mosaic which needed processing

    Vision Based Environment Mapping By Network Connected Multi-Robotic System.

    Get PDF
    The conventional environment mapping solutions are computationally very expensive and cannot effectively be used in multi-robotic environment, where small size robots with limited memory and processing resources are used. This study provides an environment mapping solution in which a group of small size robots extract simple distance vector features from the on-board camera images. The robots share these features between them using a wireless communication network setup in infrastructure mode. For mapping the distance vector features on a global map and to show a collective map building operation, the robots needed their accurate location and heading information. The robots location and heading information is computed using two ceiling mounted cameras, which collective localises the robots. Experimental results show that the proposed method provides the required environmental map which can facilitate the robot navigation operation in the environ- ment. It was observed that, using the proposed approach, the near by object boundaries can be mapped with higher accuracy comparatively the far lying objects

    Vision Based Object Recognition and Localisation by a Wireless Connected Distributed Robotic Systems

    Get PDF
    Object recognition and localisation are important processes in computer vision and robotics. Advances in computer vision have resulted in many object recognition techniques, but most of them are computationally very intensive and require robots with powerful processing systems. For small robots, these techniques are not applicable because of the constraints of execution time. In this study, an optimised implementation of SURF based recognition technique is presented. Suitable image pre-processing techniques were developed which reduced the recognition time on small robots with limited processing resources. The recognition time was reduced from 39 seconds to 780 milliseconds. This recognition technique was adopted by a team of small robots which were given prior training to search for objects of interest in the environment. For the localisation of the robots and objects a new template, designed for passive markers based tracking, was introduced. These markers were placed on the top of each robot and they were tracked by the two ceiling mounted cameras. The information from both sources, that is ceiling mounted cameras and team of robots, was used collectively to localise the objects in the environment. The objects were localised with an error ranging from 2.8cm to 5.2cm from their actual positions in the test arena which has the dimensions of 150x163cm

    Development and evaluation of vision processing algorithms in multi-robotic systems.

    Get PDF
    The trend in swarm robotics research is shifting to the design of more complicated systems in which the robots have abilities to form a robotic organism. In such systems, a single robot has very limited memory and processing resources, but the complete system is rich in these resources. As vision sensors provide rich surrounding awareness and vision algorithms also requires intensive processing. Therefore, vision processing tasks are the best candidate for distributed processing in such systems. To perform distributed vision processing, a number of scenarios are considered in swarm and the robotic organism form. In the swarm form, as the robots use low bandwidth wireless communication medium, so the exchange of simple visual features should be made between robots. This is addressed in a swarm mode scenario, where novel distance vector features are exchanged within a swarm of robots to generate a precise environmental map. The generated map facilitates the robot navigation in the environment. If features require encoding with high density information, then sharing of such features is not possible using the wireless channel with limited bandwidth. So methods were devised which process such features onboard and then share the process outcome to perform vision processing in a distributed fashion. This is shown in another swarm mode scenario in which a number of optimisation stages are followed and novel image pre-processing techniques are developed which enable the robots to perform onboard object recognition, and then share the process outcome in terms of object identity and its distance from the robot, to localise the objects. In the robotic organism, the use of reliable communication medium facilitates vision processing in distributed fashion, and this is presented in two scenarios. In the first scenario, the robotic organism detect objects in the environment in distributed fashion, but to get detailed surrounding awareness, the organism needs to learn these objects. This leads to a second scenario, which presents a modular approach to object classification and recognition. This approach provides a mechanism to learn newly detected objects and also ensure faster response to object recognition. Using the modular approach, it is also demonstrated that the collective use of 4 distributed processing resources in a robotic organism can provide 5 times the performance of an individual robot module. The overall performance was comparable to an individual less flexible robot (e.g., Pioneer-3AT) with significant higher processing capability

    ASME 2004-59928 NUCLEATE BOILING INSIDE THE EVAPORATOR OF THE PLANAR LOOP HEAT PIPE

    Get PDF
    ABSTRACT The Loop Heat Pipe (LHP) under development is a next generation micro heat transfer device that utilizes the latent heat of a working fluid and has excellent transfer capacity compared with that of standard metallic cooling devices. A typical LHP consists of an evaporator, a reservoir (also called the compensation chamber), vapor and liquid lines, a subcooler, and a condenser. As heat is applied to the evaporator, all of the input energy goes into the evaporation of the liquid in the pores of the primary CPS wick or leak to the bottom. The nucleate boiling, which occurs beneath the primary wick in the evaporator, is a very significant phenomena. It affects critical operating issues, such as dry out of the primary wick. Using a clear evaporator machined from Pyrex glass, the nucleation, which occurred in the evaporator, was studied. De-ionized water was utilized as the working fluid. INTRODUCTION The loop heat pipe (LHP) is a thermal control and heat transport device. LHPs were originally invented and developed in the former Soviet Union in the mid 1980's, and has been employed in a reliable and versatile thermal control system for space applications. LHPs can transport very large thermal power loads over long distances through flexible, small diameter tubes and against high gravitational heads due to capillary forces in the evaporator. LHPs are two-phase heat transfer devices that utilize the latent heat and are completely self-circulating systems that have no mechanical moving parts and add no unwanted vibration to the spacecraft

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd
    corecore